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Compression and Bending Tests of Wood Specimens
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Purpose

Although wood is a natural product it has a fairly regular internal structure. Wood cells are tubular and elongate and define the direction of the ‘grain’ of the wood. The tubes also grow radial to their diameters, which produce the distinctive ‘rings’ seen in cross sections of trees. The result of such a structure is that wood is a strongly anisotropic material. The hollow tubes are intended to support large loads along their axis, allowing the tree can grow upwards. They are much weaker, however under loads applied perpendicular to their axis. The yearly growth cycle of trees produces rings of alternating density around the center of the tree. Therefore, the strength of wood perpendicular to the elongate cells is also dependant on whether the load is applied perpendicular or tangent to the rings. The objective of the exercise was to evaluate the directionally dependent properties of wood. Wood specimens were subjected to compressive loading parallel (axial), radially perpendicular (radial), and tangentially perpendicular (tangential) to the grain, or axis of the wood cells. Additionally, one specimen was subject to a three-point bending test to indirectly test the wood under a tensile load, parallel to the grain. Other factors than can affect the properties of wood, such as species and moisture content were held constant.

Methods

The compression and bending test of the wood specimens were carried out according to the procedures outlined by ASTM-D143. The specimens were all of the same species, oven-dried, and cut to standard dimensions of 2”x2”x8” for the parallel to grain test, 2”x2”x6” for the perpendicular to grain tests, and 1.5”x1.5”x30” for the bending test, with the long dimension parallel to the grain for all specimens. For all tests, the specimen was placed between two horizontal steel plates in an MTS load frame with a fixed head load cell and basal 100 kips actuator with an attached LVDT. The specimens were oriented as described below:

Axial Compression: Long axis of specimen is vertical as shown in Figure 1a.

Radial Compression: Long axis of specimen is horizontal and a 2”x2” plate is inserted above the

          
specimen so that the load is applied only over this cross-sectional area, as    
shown in Figure 1d.

Tangential Compression: Orientation in load frame same as for radial compression test. See 



Figure 1c.

Bending: Two point supports are placed on the lower steel plate, 14” apart. The specimen is 



centered horizontally on these supports and a 2”x2” block centered above 



the specimen as shown in Figure 1e.

Loads in all tests were applied at 0.3 inches/minute and the data collected was in the form of millivolts converted to pounds of force from the load cell and volts converted to inches of displacement from the LVDT.

Results and Discussion

The data acquired from the compression tests was in the form of load (pounds) and displacement along the axis of the actuator (inches). To normalize for size, the load was divided by the cross sectional area of compression (4 in2) to produce stress and the displacement divided by the initial length (axial= 6in, perpendicular= 2in) to produce strain. Plots of the stress-strain curves for each compression test are shown in Figures 2a-2c. The plots all display a similar trend of a near linear increase that transitions to a non-linear increase to a maximum stress and then a decline. Additionally at the beginning of each test (very low stress and strain values), it should be noted that the curve shows a large increase in strain under almost no stress in two cases and a non-zero initial stress in the one case. It is expected that initially, in each compression test, stress and strain will increase nearly linearly proportionally from zero and so these abnormalities are taken to be artifacts of the data collection methods. To correct the data, a trendline was fit through the near-linear portion of each curve and extended to the x-axis. The equation of the trendline is shown with each curve.  The intercept of the trendline with the x-axis, found by solving the equations for y=0, is taken to be the new origin of the curve and the strain values reported below are adjusted for this new origin. The stress values remain unchanged. 


From these curves the elastic modulus and strength of the wood can be found. The elastic modulus is equal to stress divided by strain for the linear portion of the curve and conveniently is the same as the slope of the trendlines discussed above. The ‘strength’ of the wood is taken to be the maximum stress sustained by the specimen. It was observed that at failure, the specimens in the axial and tangential tests underwent classic wedge splitting while in the radial test, the lighter, less dense layers (earlywood) were compressed followed by layer-parallel splitting outside of the compression area. The specimens at failure are shown in Figure 1 b, c, and d. These results are summarized as:

	Specimen 

Orientation
	Elastic 

Modulus (ksi)
	Maximum 

Stress (psi)
	Maximum 

Strain (psi)
	Failure

Condition

	Axial
	1000.0
	11613.8
	0.015
	Wedge Split

	Radial
	99.8
	1865.6
	0.294
	End Split 

	Tangential
	66.7
	1108.8
	0.026
	Wedge Split


From this data it is clear that the wood specimens have higher strength and elastic modulus under axial compression than perpendicular compression by a factor of ten. The high elastic modulus is consistent with the low strain at failure. Furthermore the wood is slightly stronger under radial compression than tangential compression. This is understandable as the radial rings have varying densities and so the contact between these rings is a zone of weakness. The failure mode of all of the specimens confirms this as the wedge spilt and end split both involve cracking between the planes of the rings due to tension in the direction perpendicular the applied compression. Looking back at the plots it can be seen that the reason final decline of the curve is fundamentally different than for the same trend in steel tensile tests. These specimens failed brittlely by propagation of a crack. The decline in the slope of the curve before its maximum shows the development of microcracks between the cells and shearing as seen in right portion of the ‘Y’ in the tangential wedge split (Figure 1c). Immediately following the maximum stress a large crack propagates and the load rapidly drops due to failure. 

The results for the bending test are reported as deformation (inches) under load (pounds) and are plotted in Figure 2d. The modulus of elasticity and failure stress are not directly obtainable from the plot as the test itself was an indirect measure of tension failure. It is only at the center of the beam that there is no shear and the bending moment is constant. Therefore, the Modulus of Rupture (MoR) is calculated for the beam, which is equivalent to tensile failure stress, by 

MoR=Mc/I ;
M = bending moment = (max load)(span length)/4 = 2613.6lbs*14in/4



c = ½(height of beam) = .5*1.5in


I = moment of inertia = bh3/12 =1.54/12

The resulting MoR =16262.4 psi. Since the beam was oriented with the length parallel to the grain, the MoR is the failure stress for tension parallel to the grain. The beam failed under cross-grain tension as shown in Figure 1e. The value is of the same order of magnitude as the failure stress under compression (11613.8 psi). This similarity indicates that wood is equally strong under compression and tension. The modulus of elasticity, likewise, must be calculated differently. The relationship 



                       displacement= (load)(span)3/(48*E*I)

has been determined. Choosing a data point in the linear portion of the curve gives E=1246560 psi =1.2e6 ksi, which is also on the order of the elastic modulus for axial compression. Although they are computed by different methods, the elastic modulus obtained for both the bending test and the compression tests is simply a ratio of stress to strain and can be compared as such. If a glulam beam were to be subject to a similar three-point bending test, it would likely be engineered so that a high elastic modulus is present at the bottom of the beam where the most tension would occur. Since the modulus of rupture is proportional to the maximum load the beam can sustain and inversely proportional to the dimensions, it is expected that the MoR for the glulam would not necessarily also be higher than for the test presented here.

Conclusion
In this exercise we have confirmed that wood is stronger under axial compression than perpendicular compression but not much different from the strength under axial tension. Although these finding likely hold true for wood in general, wood is highly variable and the values obtained here cannot be assumed to hold true for other species or conditions.
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Figure 2: Stress stain plots with tendline (dashed line) fit to linear portion of curve for com pression tests (a,b,c) and bending test (d).
Modulus of elasticity is determined as the coeffiecient of the x term in the equations.








Figure 1: (a) Orientation of specimen in axial compression test. (b) Y-shaped fracture at the top is image is the “wedge-split” form of failure in the axially loaded specimen. (c) Similar “wedge-split” failure in the tangentially loaded specimen. Although the upper right portion of the “Y” is broomed, rather than cracked. (d) Crushing of radially loaded specimen with ring-plane parallel splitting at the ends. (e) Cross-grain tension failure of beam under a three-point bending load.
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