1. What is the gram formula mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$?
2. The sum of the atomic masses of the atoms in one molecule of $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$ is called the
A) formula mass
B) isotopic mass
C) percent abundance
D) percent composition
3. The molar mass of $\mathrm{Ba}(\mathrm{OH})_{2}$ is
A) 154.3 g
B) 155.3 g
C) $\mathbf{1 7 1 . 3} \mathbf{g}$
D) 308.6 g
4. Which equation shows a conservation of mass?
A) $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$
B) $\mathrm{Al}+\mathrm{Br}_{2} \rightarrow \mathrm{AlBr}_{3}$
C) $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{O}_{2}$
D) $\mathbf{P C l}_{\mathbf{5}} \rightarrow \mathbf{P C l}_{\mathbf{3}}+\mathbf{C l}_{\mathbf{2}}$
5. Which equation illustrates conservation of mass?
A) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}$
B) $\mathbf{H}_{2}+\mathbf{C l}_{\mathbf{2}} \rightarrow \mathbf{2} \mathbf{~ H C l}$
C) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
6. Balance the following equation:
\qquad $\mathrm{Fe}_{2} \mathrm{O}_{3}+\ldots \mathrm{CO} \rightarrow$ _ $\mathrm{Fe}+\ldots \mathrm{CO}_{2}$
7. Balance the following equation:
$\ldots \mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \ldots \mathrm{MgCl}_{2}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g})$
8. Base your answer to the following question on the information below.

A 1.0-gram strip of zinc is reacted with hydrochloric acid in a test tube. The unbalanced equation below represents the reaction.

$$
\ldots \mathrm{Zn}(\mathrm{~s})+\ldots \ldots \mathrm{HCl}(\mathrm{aq}) \rightarrow \ldots \mathrm{H}_{2}(\mathrm{~g})+\ldots \mathrm{ZnCl}_{2}(\mathrm{aq})
$$

Balance the equation for the reaction of zinc and hydrochloric acid, using the smallest whole-number coefficients.
9. Given the balanced equation:

$$
X+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HCl}
$$

Which molecule is represented by X ?
A) $\mathrm{C}_{2} \mathrm{H}_{4}$
B) $\mathrm{C}_{2} \mathrm{H}_{6}$
C) $\mathrm{C}_{3} \mathrm{H}_{6}$
D) $\mathrm{C}_{3} \mathrm{H}_{8}$
10. Given the incomplete equation:

$$
2 \mathrm{~N}_{2} \mathrm{O} 5(\mathrm{~g}) \rightarrow
$$

Which set of products completes and balances the incomplete equation?
A) $2 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
B) $2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
C) $4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
D) $4 \mathrm{NO}(\mathrm{g})+\mathrm{SO}_{2}(\mathrm{~g})$
11. Base your answer to the following question on Given the balanced equation representing a reaction:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What is the total number of moles of $\mathrm{O}_{2}(\mathrm{~g})$ required for the complete combustion of 3 moles of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$?
12. Given the balanced equation representing a reaction:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

What is the mole ratio of $\mathrm{CO}(\mathrm{g})$ to $\mathrm{CO}_{2}(\mathrm{~g})$ in this reaction?
A) $\mathbf{1 : 1}$
B) $1: 2$
C) $2: 1$
D) $3: 2$
13. Base your answer to the following question on Given the balanced equation:

$$
2 \mathrm{C}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}
$$

What is the total number of moles of C that must completely react to produce 2.0 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$?
14. Given the reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

What is the mole-to-mole ratio between nitrogen gas and hydrogen gas?
A) $1: 2$
B) $\mathbf{1 : 3}$
C) $2: 2$
D) $2: 3$
15. Base your answer to the following question on Given the balanced equation:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What is the total number of moles of $\mathrm{O}_{2}(\mathrm{~g})$ that must react completely with 5.00 moles of $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$?
16. Given the reaction:

$$
\begin{aligned}
& \mathrm{PbCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \rightarrow \\
& \mathrm{PbCrO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}_{(\mathrm{aq})}
\end{aligned}
$$

What is the total number of moles of NaCl formed when 2 moles of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ react completely?
A) 1 mole
B) 2 moles
C) 3 moles
D) 4 moles
17. Given the equation:

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many moles of oxygen are required to react completely with 1.0 mole of $\mathrm{C}_{2} \mathrm{H}_{2}$?
A) 2.5
B) 2.0
C) 5.0
D) 10
18. Given the reaction:
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

What is the total number of grams of $\mathrm{O}_{2}(\mathrm{~g})$ needed to react completely with 0.50 mole of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$?
19. Given the reaction:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

How many grams of ammonia are produced when 1.0 mole of nitrogen reacts?
20. In the reaction

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

what is the total number of moles of CO used to produce 112 grams of iron?
21. Given the reaction:

$$
3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}
$$

The total number of grams of Cu needed to produce 1.0 mole of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ is
A) 32
B) 64
C) 128
D) 192
22. Given the reaction:
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

The total number of grams of O_{2} needed to produce 54 grams of water is
23. Given the reaction:
$\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}$

What is the total mass of $\mathrm{H}_{2} \mathrm{O}$ produced when 32 grams of Cu is completely consumed?
24. What is the chemical formula for copper(II) hydroxide?
25. What is the total number of different elements present in $\mathrm{NH}_{4} \mathrm{NO}_{3}$?
26. What is the chemical formula for iron(III) oxide?
27. Which is the correct formula for nitrogen (I) oxide?
A) NO
B) $\mathrm{N}_{2} \mathrm{O}$
C) NO_{2}
D) $\mathrm{N}_{2} \mathrm{O}_{3}$
28. Which formula represents sodium sulfate?
A) NaSO_{4}
B) NaSO_{3}
C) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
D) $\mathrm{Na}_{2} \mathrm{SO}_{3}$
29. Which diagram represents a physical change, only?

Key
$\bullet=$ an atom of an element
$O=$ an atom of a different element

A)

B)

C)

D)

30. Which substance can not be broken down by a chemical change?
A) ammonia
B) mercury
C) propane
D) water

1.	286 g
2.	A
3.	C
4.	D
5.	B
6.	3
7.	3
8.	Answer: \qquad $\mathrm{Zn}(\mathrm{s})+$ $\begin{aligned} & -\frac{2}{2} \mathrm{HCl}(\mathrm{aq}) \rightarrow \\ & \mathrm{ZnCl}_{2}(\mathrm{aq}) \end{aligned}$
9.	B
10.	C
11.	7.5 mol
12.	A
13.	4.0 mol
14.	B
15.	32.5
16.	D
17.	A
18.	40.g
19.	34
20.	3.0
21.	B
22.	48
23.	18 g
24.	$\mathrm{Cu}(\mathrm{OH})_{2}$
25.	3
26.	$\mathrm{Fe}_{2} \mathrm{O}_{3}$
27.	B
28.	C
29.	A
30.	B

