- 1. What is the gram formula mass of Na₂CO₃ 10H₂O?
- 2. The sum of the atomic masses of the atoms in one molecule of C₃H₆Br₂ is called the
 - A) formula massB) isotopic massC) percent abundanceD) percent composition
- 3. The molar mass of Ba(OH)₂ is

A) 154.3 g	B) 155.3 g
C) 171.3 g	D) 308.6 g

4. Which equation shows a conservation of mass?

A) $Na + Cl_2 \rightarrow NaCl$ B) $Al + Br_2 \rightarrow AlBr_3$

C) $H_2O \rightarrow H_2 + O_2$ D) $PCl_5 \rightarrow PCl_3 + Cl_2$

- 5. Which equation illustrates conservation of mass?
 - A) $H_2 + Cl_2 \rightarrow HCl$ B) $H_2 + Cl_2 \rightarrow 2 HCl$
 - C) $H_2 + O_2 \rightarrow H_2O$ D) $H_2 + O_2 \rightarrow 2 H_2O$
- 6. Balance the following equation:

 $Fe_2O_3 + CO \rightarrow Fe_4 + CO_2$

7. Balance the following equation:

 $\underline{Mg(ClO_3)_2(s)} \rightarrow \underline{MgCl_2(s)} + \underline{O_2(g)}$

8. Base your answer to the following question on the information below.

A 1.0-gram strip of zinc is reacted with hydrochloric acid in a test tube. The unbalanced equation below represents the reaction.

 $Zn(s) + HCl(aq) \rightarrow H2(g) + ZnCl2(aq)$

Balance the equation for the reaction of zinc and hydrochloric acid, using the smallest whole-number coefficients.

9. Given the balanced equation:	10. Given the incomplete equation:	
$X + Cl_2 \rightarrow C_2H_5Cl + HCl$ Which molecule is represented by X?	$2 \text{ N}_2\text{O}_5(g) \rightarrow$ Which set of products completes and balances the	
A) C ₂ H ₄ B) C ₂ H ₆ C) C ₃ H ₆ D) C ₃ H ₈	incomplete equation? A) 2 N ₂ (g) + 3 H ₂ (g) B) 2 N ₂ (g) + 2 O ₂ (g) C) 4 NO ₂ (g) + O ₂ (g) D) 4 NO(g) + SO ₂ (g)	

11.	Base your answer to the following question on Given the balanced equation representing a reaction:	18. Given the reaction:	
	$C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$	$2 \operatorname{C_2H_2(g)} + 5 \operatorname{O_2(g)} \to 4 \operatorname{CO_2(g)} + 2 \operatorname{H_2O(g)}$	
12.	What is the total number of moles of O ₂ (g) required for the complete combustion of 3 moles of C ₃ H ₈ (g)? Given the balanced equation representing a reaction: $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ What is the mole ratio of CO(g) to CO ₂ (g) in this reaction?	 What is the total number of grams of O₂(g) needed to react completely with 0.50 mole of C₂H₂(g)? 19. Given the reaction: N₂ + 3 H₂ → 2 NH₃ 	
	A) 1:1 B) 1:2 C) 2:1 D) 3:2		
13.	Base your answer to the following question on Given the balanced equation:	How many grams of ammonia are produced when 1.0 mole of nitrogen reacts?	
	$2C + 3H_2 \rightarrow C_2H_6$	20. In the reaction	
	What is the total number of moles of C that must completely react to produce 2.0 moles of C ₂ H ₆ ?	$Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2,$	
14.	Given the reaction: $N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$ What is the mole-to-mole ratio between nitrogen gas and hydrogen gas? A) 1:2 B) 1:3 C) 2:2 D) 2:3 Base your answer to the following question on Given the balanced equation: $2 C_4H_{10}(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2O(g)$ What is the total number of moles of $O_2(g)$ that must react completely with 5.00 moles of $C_4H_{10}(g)$?	what is the total number of moles of CO used to produce 112 grams of iron? 21. Given the reaction: $3 \text{ Cu} + 8 \text{ HNO}_3 \rightarrow 3 \text{ Cu}(\text{NO}_3)_2 + 2 \text{ NO} + 4 \text{ H}_2\text{O}$ The total number of grams of Cu needed to produce 1.0 mole of Cu(NO_3)_2 is A) 32 B) 64 C) 128 D) 192 22. Given the reaction: $2 \text{ H}_2 + \Omega_2 \rightarrow 2 \text{ H}_2\Omega$	
16.	Given the reaction:		
	$PbCl_2(aq) + Na_2CrO_4(aq) \rightarrow$ $PbCrO_4(s) + 2 NaCl(aq)$	The total number of grams of O ₂ needed to produce 54 grams of water is	
	What is the total number of moles of NaCl formed when 2 moles of Na ₂ CrO ₄ react completely?	23. Given the reaction: $C_{1} + 4 HNO_{2} + C_{1}(NO_{2}) = + 2 HeO_{1} + 2 NO_{2}$	
	A) 1 moleB) 2 molesC) 3 molesD) 4 moles	$Cu + 4 HNO_3 \rightarrow Cu(NO_3)_2 + 2 H_2O + 2 NO_2$	
17. Given the equation:		What is the total mass of H ₂ O produced when 32 grams of Cu is completely consumed?	
	$2 \text{ C}_2\text{H}_2(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ CO}_2(g) + 2 \text{ H}_2\text{O}(g)$ How many moles of oxygen are required to react	24. What is the chemical formula for copper(II) hydroxide?	
	completely with 1.0 mole of C ₂ H ₂ ? A) 2.5 B) 2.0 C) 5.0 D) 10	25. What is the total number of different elements present in NH4NO3?	

- 26. What is the chemical formula for iron(III) oxide?
- 27. Which is the correct formula for nitrogen (I) oxide?

A) NO B) N2O C) NO2 D) N2O3

- 28. Which formula represents sodium sulfate?
 - A) NaSO₄ B) NaSO₃
 - C) Na2SO₄ D) Na2SO₃

29. Which diagram represents a physical change, only?

30. Which substance can not be broken down by a

B) mercury

D) water

chemical change?

A) ammonia

C) propane

Answer Key stoichiometry study guide

1.	286 g
2.	A
3.	C
4.	<u>D</u>
5.	B
6.	3
7.	3
8.	Answer: Zn(s) +
	$\underline{2} HCI(aq) \rightarrow H_2(q) +$
	$\underline{\text{ZnCl}_2(aq)}^{\text{II2}(g)}$
9.	B
10.	<u> </u>
11.	7.5 mol
12.	<u>A</u>
13.	4.0 mol
14.	B
15.	32.5
16.	
17.	<u>A</u>
18.	40. g
19.	34
20.	3.0
21.	B
22.	48
23.	18 g
24.	Cu(OH)2
25.	3
26.	Fe ₂ O ₃
27.	B
28.	<u> </u>
29.	_ <u>A</u>
30.	<u> </u>